

JAQ-003-1271003

Seat No. _____

M. Sc. (ECI) (Sem. I) Examination November - 2019

Fundamental of Digital Electronics: Paper - III

Faculty Code: 003

Subject Code: 1271003

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70

1 Answer the following: (any 7 out of 10)

14

- (1) Classify the types of Logic family (Digital IC).
- (2) Write and explain with circuit the expression of De Morgan's theorem for Boolean expression.
- (3) Convert (95.24)₁₀ into Binary number system.
- (4) Convert (5732.77)₈ into Hexadecimal number system.
- (5) Explain Commutative law for Boolean expression.
- (6) Convert $(1683.45)_{10}$ into BCD.
- (7) Explain 2 input Ex-NOR gate with its symbol and truth table.
- (8) Convert $(1100101.110)_2$ into decimal.
- (9) Explain with example an associative Law for Boolean expression.
- (10) Convert $(234.45)_{10}$ into Hexadecimal number system.
- 2 Answer the following: (any 2 out of 3)

14

- (1) Design 2 input EX -OR gate using only 2 input NAND gates. Explain each output in detail.
- (2) Convert DECIMAL number (847) into ALL number systems.
- (3) Simplify following Boolean expression using K MAP.

$$F(A, B, C, D) = \sum (0, 3, 4, 7, 8, 11, 12, 15)$$

3 Answer the following:

14

- (1) Explain ALL BASIC gates with proper symbol, Boolean expression and truth table.
- (2) Explain NOR Gate as a Universal Gate.

OR

3 Answer the following:

14

- (1) Multiply $(10011)_2$ and $(110)_2$ using repeated Addition algorithm.
- (2) Divide $(10111)_2$ by $(11)_2$ using repeated subtraction algorithm.
- 4 Answer the following:

14

- (1) Explain Binary FULL SUBTRACTION circuit with truth table, Boolean expression and Logic circuit.
- (2) Design 1 Bit *BCD* Adder circuit with proper Logic circuit. (use IC 7483)
- 5 Answer the following: (any 2 cut of 4)

14

- (1) Do the following arithmetic using 2's complement.
 - (a) $(+38)_{10} (+19)_{10}$
 - (b) $(-36)_{10} + (+16)_{10}$
 - (c) $(+40)_{10} + (-25)_{10}$
- (2) Do following BCD Addition using Excess 3 Code
 - (a) $(235)_{10} (133)_{10}$
 - (b) $(204)_{10} + (172)_{10}$
 - (c) $(253)_{10} + (108)_{10}$
- (3) Write the Following forms for the given Boolean expression.

$$F(A, B, C) = \overline{B} \overline{C} + \overline{C} + A B$$

- (a) Expanded form
- (b) Canonical form
- (c) Dual form
- (4) Design 2 bit Magnitude Comparator circuit. Explain in detail.